导数入门

导数入门

导数入门

全是与坡度有关!

坡度 = Y 的改变X 的改变

我们可以求两点之间的 平均 坡度.

但我们怎样求在一点的坡度?

没有什么可以测量的!

但是,在导数里,我们可以用一个很小的差……

……然后把它缩小到零。

求个导数!

求函数 y = f(x) 的导数,我们用坡度的公式:

坡度 =

Y 的改变

X 的改变

= ΔyΔx

我们看到(如图):

x 从

x

变到

x+Δx

y 从

f(x)

变到

f(x+Δx)

按照这步骤去做:

代入这个坡度公式:

ΔyΔx = f(x+Δx) − f(x)Δx

尽量简化

把 Δx 缩小到零。

像这样:

例子:函数 f(x) = x2

我们知道 f(x) = x2,也可以计算 f(x+Δx) :

开始:

f(x+Δx) = (x+Δx)2

展开 (x + Δx)2:

f(x+Δx) = x2 + 2x Δx + (Δx)2

坡度公式是:

f(x+Δx) − f(x)

Δx

代入 f(x+Δx) 和 f(x):

x2 + 2x Δx + (Δx)2 − x2

Δx

简化 (x2 and −x2 约去):

2x Δx + (Δx)2

Δx

再简化(除以 Δx):

= 2x + Δx

当 Δx 趋近 0时,我们得到:

= 2x

结果:x2 的导数是 2x

我们写 dx,而不写 "Δx 趋近 0",所以 "的导数" 通常是写成

x2 = 2x

"x2 的导数等于 2x"

或 "x2 的 d dx 等于 2x"

x2 = 2x 的意思是什么?

意思是,对于函数 x2,在任何一点的坡度或 "变化率" 是 2x。

所以当 x=2,坡度是 2x = 4,如图所示:

或当 x=5,坡度是 2x = 10,以此类推。

注意:f’(x) 也是 "的导数" 的另一个写法:

f’(x) = 2x

"f(x) 的导数等于 2x"

再来看一个例子。

例子:x3是什么?

我们知道 f(x) = x3,也可以计算 f(x+Δx) :

开始:

f(x+Δx) = (x+Δx)3

展开 (x + Δx)3:

f(x+Δx) = x3 + 3x2 Δx + 3x (Δx)2 + (Δx)3

坡度公式:

f(x+Δx) − f(x)

Δx

代入 f(x+Δx) 和d f(x):

x3 + 3x2 Δx + 3x (Δx)2 + (Δx)3 − x3

Δx

简化 (x3 and −x3 约去):

3x2 Δx + 3x (Δx)2 + (Δx)3

Δx

再简化 (除以 Δx):

= 3x2 + 3x Δx + (Δx)2

当 Δx 趋近 0 时,我们得到:

x3 = 3x2

你可以去玩玩 导数绘图器。

其他函数的导数

我们可以用同样的方法去求其他函数(如正弦、余弦、对数等等)的导数。

但在实际应用时,最常见的方法是;

导数法则

例子:sin(x) 的导数是什么?

在 导数法则 的网页上,答案是 cos(x)

做好了!

但是,用这些法则时要小心!

例子:cos(x)sin(x) 的导数是什么?

你不可以把 cos(x) 的导数与 sin(x)的导数相乘来得到答案……你需要用 "乘积法则" (见 导数法则)。

答案是 cos2(x) - sin2(x)

所以你的下一步是:学习使用导数法则。

记法

"缩小到零" 可以写一个 极限,像这样:

"f 的导数等于 当 Δx 趋近零时,f(x+Δx) - f(x) 除以 Δx的极限

有时导数是写成这样的 (见 以 dy/dx 来看导数):

求导数的过程称为 "微分法"。

你用微分法……来求导数。

何去何从?

去这里学习及练习用 导数法则 来求导数。

导数法则

微积分索引

相关文章

🪶
4、穿越火线赛季结束怎么更新
线上365bet正网

4、穿越火线赛季结束怎么更新

07-04 👀 4418
🪶
征斾的解释及意思
s365app下载

征斾的解释及意思

06-29 👀 5379